direct product, metabelian, soluble, monomial, A-group
Aliases: C6×C24⋊C5, C25⋊2C15, C24⋊4C30, (C24×C6)⋊C5, (C23×C6)⋊2C10, SmallGroup(480,1204)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C24⋊C5 — C3×C24⋊C5 — C6×C24⋊C5 |
C24 — C6×C24⋊C5 |
Generators and relations for C6×C24⋊C5
G = < a,b,c,d,e,f | a6=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >
Subgroups: 816 in 164 conjugacy classes, 12 normal (all characteristic)
C1, C2, C2, C3, C22, C5, C6, C6, C23, C10, C2×C6, C15, C24, C24, C22×C6, C30, C25, C23×C6, C23×C6, C24⋊C5, C24×C6, C2×C24⋊C5, C3×C24⋊C5, C6×C24⋊C5
Quotients: C1, C2, C3, C5, C6, C10, C15, C30, C24⋊C5, C2×C24⋊C5, C3×C24⋊C5, C6×C24⋊C5
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)
(1 4)(2 5)(3 6)(19 22)(20 23)(21 24)
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 7 29 18 22)(2 8 30 13 23)(3 9 25 14 24)(4 10 26 15 19)(5 11 27 16 20)(6 12 28 17 21)
G:=sub<Sym(30)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,4)(2,5)(3,6)(19,22)(20,23)(21,24), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,7,29,18,22)(2,8,30,13,23)(3,9,25,14,24)(4,10,26,15,19)(5,11,27,16,20)(6,12,28,17,21)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,4)(2,5)(3,6)(19,22)(20,23)(21,24), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,7,29,18,22)(2,8,30,13,23)(3,9,25,14,24)(4,10,26,15,19)(5,11,27,16,20)(6,12,28,17,21) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30)], [(1,4),(2,5),(3,6),(19,22),(20,23),(21,24)], [(7,10),(8,11),(9,12),(19,22),(20,23),(21,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,7,29,18,22),(2,8,30,13,23),(3,9,25,14,24),(4,10,26,15,19),(5,11,27,16,20),(6,12,28,17,21)]])
G:=TransitiveGroup(30,105);
48 conjugacy classes
class | 1 | 2A | 2B | ··· | 2G | 3A | 3B | 5A | 5B | 5C | 5D | 6A | 6B | 6C | ··· | 6N | 10A | 10B | 10C | 10D | 15A | ··· | 15H | 30A | ··· | 30H |
order | 1 | 2 | 2 | ··· | 2 | 3 | 3 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | ··· | 6 | 10 | 10 | 10 | 10 | 15 | ··· | 15 | 30 | ··· | 30 |
size | 1 | 1 | 5 | ··· | 5 | 1 | 1 | 16 | 16 | 16 | 16 | 1 | 1 | 5 | ··· | 5 | 16 | 16 | 16 | 16 | 16 | ··· | 16 | 16 | ··· | 16 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 |
type | + | + | + | + | ||||||||
image | C1 | C2 | C3 | C5 | C6 | C10 | C15 | C30 | C24⋊C5 | C2×C24⋊C5 | C3×C24⋊C5 | C6×C24⋊C5 |
kernel | C6×C24⋊C5 | C3×C24⋊C5 | C2×C24⋊C5 | C24×C6 | C24⋊C5 | C23×C6 | C25 | C24 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 8 | 8 | 3 | 3 | 6 | 6 |
Matrix representation of C6×C24⋊C5 ►in GL5(𝔽31)
26 | 0 | 0 | 0 | 0 |
0 | 26 | 0 | 0 | 0 |
0 | 0 | 26 | 0 | 0 |
0 | 0 | 0 | 26 | 0 |
0 | 0 | 0 | 0 | 26 |
30 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 1 |
30 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 30 |
30 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 30 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
G:=sub<GL(5,GF(31))| [26,0,0,0,0,0,26,0,0,0,0,0,26,0,0,0,0,0,26,0,0,0,0,0,26],[30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,1],[30,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,30],[30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,30],[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C6×C24⋊C5 in GAP, Magma, Sage, TeX
C_6\times C_2^4\rtimes C_5
% in TeX
G:=Group("C6xC2^4:C5");
// GroupNames label
G:=SmallGroup(480,1204);
// by ID
G=gap.SmallGroup(480,1204);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,2,2,1137,1593,2329,3695]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^6=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations