Copied to
clipboard

G = C6×C24⋊C5order 480 = 25·3·5

Direct product of C6 and C24⋊C5

direct product, metabelian, soluble, monomial, A-group

Aliases: C6×C24⋊C5, C252C15, C244C30, (C24×C6)⋊C5, (C23×C6)⋊2C10, SmallGroup(480,1204)

Series: Derived Chief Lower central Upper central

C1C24 — C6×C24⋊C5
C1C24C24⋊C5C3×C24⋊C5 — C6×C24⋊C5
C24 — C6×C24⋊C5
C1C6

Generators and relations for C6×C24⋊C5
 G = < a,b,c,d,e,f | a6=b2=c2=d2=e2=f5=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bcd, cd=dc, ce=ec, fcf-1=cde, fdf-1=de=ed, fef-1=b >

Subgroups: 816 in 164 conjugacy classes, 12 normal (all characteristic)
C1, C2, C2, C3, C22, C5, C6, C6, C23, C10, C2×C6, C15, C24, C24, C22×C6, C30, C25, C23×C6, C23×C6, C24⋊C5, C24×C6, C2×C24⋊C5, C3×C24⋊C5, C6×C24⋊C5
Quotients: C1, C2, C3, C5, C6, C10, C15, C30, C24⋊C5, C2×C24⋊C5, C3×C24⋊C5, C6×C24⋊C5

Permutation representations of C6×C24⋊C5
On 30 points - transitive group 30T105
Generators in S30
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)
(1 4)(2 5)(3 6)(19 22)(20 23)(21 24)
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 7 29 18 22)(2 8 30 13 23)(3 9 25 14 24)(4 10 26 15 19)(5 11 27 16 20)(6 12 28 17 21)

G:=sub<Sym(30)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,4)(2,5)(3,6)(19,22)(20,23)(21,24), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,7,29,18,22)(2,8,30,13,23)(3,9,25,14,24)(4,10,26,15,19)(5,11,27,16,20)(6,12,28,17,21)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,4)(2,5)(3,6)(19,22)(20,23)(21,24), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,7,29,18,22)(2,8,30,13,23)(3,9,25,14,24)(4,10,26,15,19)(5,11,27,16,20)(6,12,28,17,21) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30)], [(1,4),(2,5),(3,6),(19,22),(20,23),(21,24)], [(7,10),(8,11),(9,12),(19,22),(20,23),(21,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,7,29,18,22),(2,8,30,13,23),(3,9,25,14,24),(4,10,26,15,19),(5,11,27,16,20),(6,12,28,17,21)]])

G:=TransitiveGroup(30,105);

48 conjugacy classes

class 1 2A2B···2G3A3B5A5B5C5D6A6B6C···6N10A10B10C10D15A···15H30A···30H
order122···2335555666···61010101015···1530···30
size115···51116161616115···51616161616···1616···16

48 irreducible representations

dim111111115555
type++++
imageC1C2C3C5C6C10C15C30C24⋊C5C2×C24⋊C5C3×C24⋊C5C6×C24⋊C5
kernelC6×C24⋊C5C3×C24⋊C5C2×C24⋊C5C24×C6C24⋊C5C23×C6C25C24C6C3C2C1
# reps112424883366

Matrix representation of C6×C24⋊C5 in GL5(𝔽31)

260000
026000
002600
000260
000026
,
300000
030000
003000
000300
00001
,
300000
030000
00100
00010
00001
,
10000
030000
00100
00010
000030
,
300000
030000
003000
00010
000030
,
01000
00100
00010
00001
10000

G:=sub<GL(5,GF(31))| [26,0,0,0,0,0,26,0,0,0,0,0,26,0,0,0,0,0,26,0,0,0,0,0,26],[30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,1],[30,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,30],[30,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,30],[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0] >;

C6×C24⋊C5 in GAP, Magma, Sage, TeX

C_6\times C_2^4\rtimes C_5
% in TeX

G:=Group("C6xC2^4:C5");
// GroupNames label

G:=SmallGroup(480,1204);
// by ID

G=gap.SmallGroup(480,1204);
# by ID

G:=PCGroup([7,-2,-3,-5,-2,2,2,2,1137,1593,2329,3695]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^6=b^2=c^2=d^2=e^2=f^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,f*c*f^-1=c*d*e,f*d*f^-1=d*e=e*d,f*e*f^-1=b>;
// generators/relations

׿
×
𝔽